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THE SHEAR ENVELOPE IN CREEP OF BEAMS
OF THIN-WALLED OPEN CROSS SECTION

A. PuiLLIPST and P. E. ZaNNis]

Department of Engineering and Applied Science, Yale University, New Haven, Connecticut

Abstract—The paper generalizes for creep the concept of the shear center for straight thin-walled beams of
open cross section. It is shown that the shear center is replaced by the envelope of a family of straight lines
—the torsion-free axes—such that when the plane of bending passes through such a straight line the cross section
will suffer no torsion. A method is presented for the calculation of this envelope.

Assuming that the stress—strain rate law is of the power type, it is shown that this envelope is a function
of the exponent n of the power law. Since the value of n varies with the temperature, a change in the tem-
perature requires a translation of the plane of loading in order to avoid torsion. Omission of this translation
introduces additional shearing stress due to torsion of an order of magnitude equal to that of the shearing stress
due to bending. The theory is applied to a semicircular cross section and the computations were made on an
IBM 7094-7040 computer.

INTRODUCTION

THE purpose of this paper is to generalize the concept of the shear center for a straight-
thin-walled beam of open cross section under conditions of creep. It will be shown that
for creep, in order to avoid torsion, instead of a shear center we have to use a shear envelope
the size and location of which depend on the creep law. The shear envelope will be
determined for a thin-walled beam of semicircular cross section, and the engineering
significance of the replacement of the shear center by a shear envelope will be assessed.

The standard assumptions of the elementary theory of bending of beams will be
adopted for creep as it was done by several authors in discussing the determination of the
shear center when Hooke’s law is valid ; see, for example, Timoshenko [1], Maillart [2]
and Weber [3]. It will be assumed, therefore, that plane cross sections remain plane and
that the longitudinal stresses are those which follow from the assumption of pure bending.
These longitudinal stresses are used in order to determine the shearing stresses from
equilibrium considerations alone. It will be assumed that both the longitudinal stresses
and the shearing stresses are uniformly distributed over the thickness of the wall and that
the shearing stresses are parallel to the middle surface of the wall. Finally, it will be
assumed that the deformation of the cross section is not large enough to influence
appreciably the value of the stresses.

Consider the cross section in Fig. 1 where the point 0 is the centroid of the cross
section and the point S is the shear center when Hooke’s law is valid. For linear elasticity
all neutral axes pass through the point 0 and to each neutral axis NN corresponds a line
PP passing through S such that when the plane of loading passes through PP the neutral
axis will be NN and the cross section will suffer no torsion. The line PP will be called a
torsion free axis.
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Johnson and Mellor [4] calculated the position of the torsionfree axis for symmetrical
bending of a member of thin-walled cross section using a power type stress—strain law.

It was shown by Phillips and Donath [5] that for a nonlinear stress-strain law and
for creep the neutral axes do not pass through a given point but they form a family of
lines ; the envelope of these lines was determined in [5] for a power type stress—strain law.
It was also shown by Phillips [6] that the torsionfree axes PP, for a nonlinear stress—strain
law form a family of torsionfree axes which do not pass through the same point (see also
the analysis by Patel et al. [7]). This family of axes has an envelope which will be determined
in this paper.

Consider two planes of loading passing through torsionfree axes. In linear elasticity
these two planes will be generated from each other by a rotation since all torsionfree axes
pass through the same point 0. In creep, however, it is necessary, in addition to rotation,
to introduce a translation in order to generate the one plane of loading from the other.
It follows then that a rotation of the plane of loading will introduce torsional loading of
the beam unless the rotation is accompanied by a translation of the plane of loading by
an amount which is a function of the rotation. In addition, suppose that the stress—strain
rate law is of the power type

o = (sign §)A|é|". (1)

Then the family of torsionfree axes will be shown to be a function of the exponent n. The
value of n varies with the temperature as indicated in Odqvist [8] and Hult [9]. Conse-
quently, a change in the temperature will require a change in the amount of translation
of the plane of loading which, according to the discussion above, is required to avoid
torsion. It will be shown that omission of this translation will introduce additional shearing
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stresses (due to torsion) of an order of magnitude which may be equal to that of the
shearing stresses due to bending.

1t is, therefore, of considerable interest to determine the envelope of the torsionfree
axes so that the significance of the lack of a single shear center can be assessed.

This paper is divided into two parts. In the first part we develop the general theory,
while in the second part the theory is applied to a semicircular cross section and, on this
basis, the significance of the lack of a single shear center is discussed. The computations
were made on an IBM 7094-7040 computer.

GENERAL THEORY

Consider a thin-walled beam of arbitrary cross section as in Fig. 2. The system of
coordinates X YZ is selected such that the X axis is parallel to the centroidal line of the
beam. The assumption that plane cross sections remain plane during creep leads to the
expression

é=ay+pz+7y )

for the strain rate, where the dots denote derivatives with respect to time. If ¢ = f(¢) is
the stress rate of strain law of creep, we obtain

o= f@y+Pz+7) 3)
for the stress distribution.

It will be assumed that axial forces are not applied and that normal and shearing
stresses are uniformly distributed over the width B of the cross section, and, finally, that
the shearing stresses are parallel to the corresponding tangent to the middle line of the
cross section.

From Fig. 3 it follows that the equation of equilibrium for an element of the cross
section is

0 do(s)
B = —Z=B() @

FiG. 2.
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where 7 is the shearing stress and s is the length of the middle line of the cross section,
which varies from s = 0 at one end to s = L at the other end. Integrating equation (4),
we obtain

da(s)
o(s) = B()f Bs) 3 ds+£,(0). )

As the edges of the cross section are free from shearing stresses we obtain 7(0) = 0.
Hence the constant of integration in equation (5) f,(x) = 0, so that
1 (* do(s)
=———| B ds. 6
(s) Bs) ), (s) 5 & (6)
These shearing stresses produce a shear flow which, in turn, gives rise to a torque T
about the X axis:

s=L
T = f B(s)t(s)R(s) ds N

=0

where R(s) is the normal distance from the X axis to the shearing stress 1(s), (Fig. 4). Hence,

T= —f R(s)f B(s )——dsd (8)

In order to eliminate the twist produced by this torque, it is necessary to displace
the plane of loading parallel to itself from the position passing through the X axis by
the amount D, shown in Fig. 4, where

D= T 9)
=7 (
dM
= i (10)
For the shearing force V we have
V, _dM,/dx

V=

(11

cos 0 cos @



The shear envelope in creep of beams of thin-walled open cross section 1293

Fi1G. 4.

At this stage it is useful to consider a transformation of equation (8). By using the
integration by parts formula given by equation (12)

s=L s=L
J udv = [uv)s— f vdu (12)

s=0 s=0

equation (8) can be written as follows:

f R(s)f B(s )a (S)dsd _[ )f )@d] —rb sR(s )B(s)is)d

s=0 (13)
3 J‘“"SdR(s) B(s )60'(5)
5=0 ds Jo
where we used for u and v the equations (14)
s=L
u = R(s) f B(s )a"(s)
14
v=s. 14
Now, from equation (4) it follows that
0 oy, L
[R(S)J B() a(s) ] = —[SR(S)f E—[B(S)T(S)] dS]
0 00X 0 (15)

—[sR(s)B(s)t(s)]s = — LR(L)B(Lyt(L) = 0
since 1(L) =
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Therefore, equation (8) may now be written as

s=1L s=L dR a
T= f SR(s)B6) 5 294 f (5) f B2 s 16)

s=0 s=0

When R(s) is a stepwise constant function, the second integral in (16) vanishes and the
expression of the torque simplifies to

r= [ rom s s (1)
5=0
We now consider the three equations of statics which give
fsj: B(s)a(s)ds = 0 (18)
o B(s)o(s)yds = — M, (19)
iiL
-£=o B(s)o(s)zds = M, (20)

where M, and M, are the bending moments with respect to the Z and Y axes respectively.
The direction of the moment vector is determined by the ratio

= tan 8 21

My

where 0 is the angle of the moment vector with the Y axis.
Introducing the distance D, = D/cos 0, one may rewrite equation (9) as

_ T B {52 R(s) j'(‘) B(s)[0a(s)/0x] ds ds
> dMydx  f*ZL B(s)[d0(s)/dx]z ds

D (22)

If (Y*, Z*) is a generic point of the straight line PP the equation of the line PP is
given by
D,—Y*=tanf.Z* (23)

which with equations (19), (20) and (22) can be written in the form

§i=o RO Bls)[0a(s)/0x] dsyds JiZ5 B(s)ats)y ds

LB oooxlzds L =L B(s)o(s)z ds 24)
L D] L 0

For a given cross section the parameters defining the position of the straight line in
equation (24) are those of equation (2); that is &, §, and .

Suppose that equation (3) has the form of a power law (1) where 4 and n are material
constants depending generally only on the temperature at each point of the cross section.
This power law has been used extensively in the literature of creep. Figure 5 gives a graphical
representation of this law for several values of n. It is seen that for n = 1 we have linear
creep, while for n = 0 the rate of strain is indeterminate at ¢ = 4 and zero at o < A.
The elastic analog, see Hoff [10] states that n = 1 corresponds to elasticity and n = 0
to plasticity.
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With equation (3), when 7 # 0, the equation becomes
o = (sign §)A7"lay+ bz + 1" (25)
where
o= ; b=". (26)
Figure 4 shows that the position of the neutral axis is defined by the two points with

coordinates (Y,,0) and (0, Z,), which are intersections of the neutral axis with the Y
and Z axis respectively. We easily obtain

1 1
a= A b= ~Zo 27
Using equation (25), equations (18) and (21) can be expressed as follows:
s=L
f B(s)(sign é)lay+bz+1{"ds = 0 (28)
s=0

{525 B(s)(sign é)|lay+ bz + 1"y ds
f:2¢ B(s)(sign é)|lay+ bz + 1|"z ds

tan 6. (29)

From equation (28) we can see that for a given value of a the corresponding value of b
is uniquely determined and, therefore, that the position of the neutral axis is a function
of only one parameter. The one to one correspondence between the lines PP and NN
shows that also the lines PP depend on one parameter only. Our task will be to obtain
their envelope by eliminating this parameter.

From equations (28) and (29) it is seen that the position of the neutral axis is independent
of the magnitude of the bending moment; it depends on the exponent n, but not on the



1296 A. PHILLIPS and P. E. ZANNIS

coeflicient A, since this latter coefficient has been eliminated from both equations. For a
given 6 equations (28) and (29) give a solution for a and b. This solution is independent
of the bending moment, and consequently of x. From equation (25) we can obtain,
therefore

oo 0

ol &-(y VAlay+ bz + 1| (30)

and from equations (24) and (30) we obtain

fj:(’;R(S)U;B(s)(signé)lay+bz+ll"ds]ds__ . _ff:gB(s)lay+bz+1|"ydsZ (1)
{525 B(s)(sign é)|ay + bz +1|"z ds P25 B(s)lay+bz+1"zds™

By differentiating equations (28) and (31) with respect to the parameter a, and using
equation

0
%[(sign &lay+bz+1"] = ny(ay+bz+ 1y} (32)

we obtain the following equations:

s=L db s=L
f B(s)ylay+bz+1)"1 ds+af B(s)z{ay+bz+1)""1ds = 0 (33)
s=0

s=0
s=L

s=1L db
Y*[f Yz(ay+bz+1)""B(s)ds+&J‘

s=0 s=0

22B(s)(ay+ bz +1)""! ds]

s=L s=L
_Z*[f y2(ay+bz+1)n—1B(s)d3+%gf B(s)yzlay+bz+1y ! ds]
s=0

s=0

s=L db ==t
= — B(s)R(s)ylay +bz+1)""1s ds—& B(s)R(s)(ay +bz+1)"" s ds. (34)

s=0 s=0
In principle, the equations of the envelope of the lines PP will be obtained by elim-
inating the parameters a and b between equations (28), (31) and (34), where db/da has
already been eliminated by using equation (33). Due to the nonlinearity of these equations
the envelope is constructed by obtaining the contact points (Y, Z) between the envelope
and the lines PP. These contact points are determined by solving equations (31) and (34).

APPLICATION TO A SEMICIRCULAR CROSS SECTION

We apply the results of the previous discussion to a semicircular cross section as
shown in Fig. 6. The origin of the coordinates is such that
<w<

z=Rcosw y=Rsinw - . (35)

LSRR ]
NS

In this particular cross section we selected R = 101in.; the results of this section will be
valid, however, for any value of R. Our results are independent of the selected value of
B since B is constant throughout the cross section.

Figure 7 gives the coordinate Z, as a function of the angle ¢ which the neutral axis
NN makes with the coordinate axis Y. Here Z, is the coordinate of the intersection point
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of NN with the Z axis. The function Z, = f(¢) is given for several values of the exponent n.
It is seen that Z, is practically constant between ¢ = 1.0 and ¢ = n/2. For n =1 all
neutral axes pass through the centroid. We also notice that for decreasing values of n
the range of the values Z, is increasing.

In Fig. 8 we see the envelopes of the neutral axes for several values of n which have
been obtained by a method explained in Ref. [5]. In Fig. 9 we see the envelopes of the
torsionfree axes for the same values of n.

Z'

Zinnn
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The contact points between the envelopes and the lines PP were determined by solving
equations (31) and (34). These equations could be simplified considerably since R(s) is
in the present case a constant. The same simplification is valid when R(s) is a stepwise
function. Indeed, by using equation (17), equation (31) becomes

s=L s=L

Y* B(s)(sign é)|lay+ bz + 1|"z ds— Z* J B(s)(sign é)|ay +bz+ 1"y ds
5=0 s=0

s=L

= j B(s)R(s)(sign é)lay+bz+ 1|"sds (36)
=0

and equation (34) becomes

5=

s=L L
Y"‘[J yz(ay+bz+1)"'1B(s)ds+%%f zz(ay+bz+1)""B(s)ds]

s=0 s=0

s=1 s= L
A [J yHay+bz+1)""1B(s) ds+ﬁf yz{ay+bz+ 1" 1B(s) ds]

5= da s=0

t o

L s=L
= R(s)y(ay+bz+1)"" ! B(s)s ds +g—~l‘: f R(s)z(ay+bz+ 1y~ 1B(s)s ds. (37)
=0 s=0

These two equations are much simpler than equations (31) and (34), respectively.

Inspection of Fig. 9 shows that the envelopes of the torsionfree axes are curvilinear
triangles which for decreasing n grow in size and are displaced in the direction of the cross
section. These curvilinear triangles correspond to the curvilinear triangles in Fig 8
representing the envelopes of the neutral axes.

For n = 1 the curvilinear triangle in Fig. 9 is reduced to the shear center of elasticity.
A change of n from 1 to 0-1 requires a parallel displacement e of the line PP from 0-25
to 1-10in., depending on the orientation 8 of PP, see Fig. 10. Even a change of n from
066 to 0-30 requires a value e from 0-3 to 0-5 in.

Table 1 gives the necessary displacements e for changes of n from 1.0 to values 0-10,
0-30, and 0-66 for several angles 6.

From data presented in Odqvist [8] and in Hult [9] and shown graphically in Fig. 11
it is shown that the exponent n is a function of the temperature and that it changes
considerably with increasing temperature. Typical changes are for copper from 0-2 at
370°F to 0-52 at 450°F, and for carbon steel from 0-15 at 750°F to 0-35 at 1020°F. We

TABLE 1

7] n=010 n = 0.30 n = 0-66
] (in.) (in) (in)
20 0-504 0354 0154
30 0-67 047 021
40 0-86 060 026
50 0-94 0-67 027
60 1.00 0-70 0-26
8¢ 0-69 039 015

90 010 025 013
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conclude that a relatively small change in temperature may produce a substantial change
in the value of n and consequently a substantial displacement of the line PP. If not effected,
this displacement will produce torsional shearing stresses in the cross section in addition
to the already existing bending shearing stresses. In what follows, it will be seen that
these additional torsional shearing stresses are of the same order of magnitude as the
original bending shearing stresses.

Even without a change in the temperature a rotation of the plane of bending requires
an appropriate translation of this plane in order for the line PP to remain tangent to the
envelope. Assume that for some value of n the intersection of PP in its vertical position
with the Z axis is fixed and that rotation of PP can be effected only about the intersection
point. Then it is seen that if n = 0-1 a 45° rotation of the line PP requires a displacement
of approximately 0-75in., a value which corresponds to substantial additional torsional
shearing stresses.

ST T T T TI T
{RRaN ea==r/s
NN

200 400 600 800 1000 1200

temperature °F
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We shall now calculate the shearing stresses due to bending in the absence of torsion
and then we shall compute the additional shearing stresses which will be produced by
the torsion caused by an arbitrary parallel displacement of the plane PP.

The shearing stresses due to bending are given by equation (6) which with equation (25)
and for a constant B becomes

a o|n s
r= -4 J (sign &)|ay+ bz + 1" ds. (38)
ox Jo
For given values of a and b, i.e., for a given direction of the loading plane, the angle 6
which the loading plane makes with the z axis is given by equation (29) written now as
[5=5(sign é)lay+bz+ 1"y ds

s

tanf = ———— .
an P2t (sign é)lay+bz+11"zds

(39)

The contribution to the shearing force V of the shearing stress t at any value s, or
angle w, is

17, = tsin (0 —w) (40)
so that we now write
s=L al,yln w=n/2 ) )
V= f 1,Bds = ABR A f (sign é)lay + bz + 1|" sin(f — w) dw. 1)
s=0 w=—nf2
Thus we obtain
T o, (sign é)lay+bz+1" do @)
vV B[eZY2  (signé)lay+bz+1]"sin(0— ) do’

In Fig. 12 we show the distribution of t/V along the cross section for n = 0-100 at a
specific position of the neutral axis. The values are given in terms proportional to 1/B.
The shearing stresses due to torsion caused by an arbitrary parallel displacement e of the
plane PP will be obtained easily for the two limiting cases n=1and n =0. For n = 1
the shearing stress distribution across the width of the cross section is linear. We assume
that this distribution is also independent of w.}

Then, using expressions given in Wang [11] we obtain

¢ 3e
max __ iy 43
For n = 0 the stress distribution is perfectly plastic so that we obtain
174 4e
max _ . 44
4 LB? “44)
For intermediate values of n the ratio 1,,,,/V is
3e Tmax 4e (5)

LB~ V ~ LB*

+ This assumption is correct with very good approximation except in the neighborhood of w = + n/2.
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To compare the values of 7/V due to torsion with the values due to bending we assume
as a first approximation that 1., /V changes linearly with n between n =1 and n = 0,

We now remark that (7,,,/V orsion is inversely proportional to B? whereas (Tpe./ ¥ Joending
is inversely proportional to B. Then, for a sufficiently small B, (,,,,/V )orsion €20 be made
equal or larger than (Tpe/ ¥ pending - Assuming, for example, that B = 1,n = 0.1,L = 10nin,,
8 = 30°, from Table 1 we obtain e = 0-67in., and from inequalities (45) we obtain
{(Tmax/ Vorsion While from Fig. 12 the value of (7,,/V)pending is found. We see that
(Tmax/V Ibending = 0-0993 Ib/in.? while (Tpu/V iorsion = 0-0832 1b/in.2. These two values are
of the same order of magnitude. We thus observe that the determination of the envelopes
of the torsionfree axes is necessary for a correct determination of the carrying capacity
of a thin-walled beam of open cross section.

CONCLUDING REMARKS

By using the elementary theory of bending of beams, the concept of the shear center
for straight thin-walled beams of open cross section has been generalized to the case of
creep. It was shown that the shear center is replaced by the envelope of a family of straight
lines—the torsion-free axes—such that when the plane of bending passes through such
a straight line the cross section will be free of torsion.

For a power type stress-strain rate creep law

o = sign & A|é]"

the envelope was shown to depend on the exponent n which varies with the temperature.
Hence a change in the temperature requires a translation of the plane of loading to avoid
torsion. But even without a change in temperature a rotation of the plane of bending must
be accompanied by an appropriate translation to avoid torsion because the torsion-free
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axes do not meet at one point. It was shown that omission of the translation of the plane
of loading introduces torsional shearing stresses of an order of magnitude equal to the
bending stresses. Hence this translation cannot be neglected in design.
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Abcrpaxt—Paborta 0606waer ana npofiieMsl NON3YYECTH NOHATHE UEHTPA CABHTA AN NPSMOTHHEHHBIX
TOHKOCTEHHBIX Oasiok, oTKphITOro npoduns. Yxaswisaercd, 4To LUEHTP CABUrA 3ameHsiercs orubaromieit
cemelcraa npaMonHHelHbIX, CBOBOOHBIX OT KPyYeHMs ocell Tak, YTO KOrja IIOoCKoCTh Hirnba nepexonut
CKBO3b Taxol npaMoll nwHHH, NONEPEYHOE CeuCHMe HE moasepraerca kpydenwio. [aerca merom nns
pacuera 3roft orubarouiel.

TMpusnmasg, 410 3aK0OH CKOPOCTH AehOPMALIMHE ¥ HATIDSUKEHHI ABIAETCH CTENEHHOTO THIA, YKA3hIBAETCH,
470 3Ta orubaromias npencrasieT cofoit dyHKUMIO TOKA3ATENA-CTENCHHOTO 33KOHA. YuuTHIBaR, YTO
3HAYEHHE-IABHCHT OT TEMAEPATYDHI, TOTAA H3MEHEHHE TEMNEpatypsl TpeSyer TPAHCHAUMH TNNOCKOCTH
Harpysku, ¢ uenbio uibexenns kpyuerus. [1ponyck 1o TpaHC/IsLMK BRIbBaeT noGaBoYHOE HANPIKEHHE
capura, 6naronaps KpYYEHHIO, KOTOPOrO HODAAOK BENMYHMHLI PABEH HANPHAXEHHIO COBHIA BCIECACTBHE
w3ruba. Teopus IpUMEHsIETC K TOMYKPYITIOMY HOPEYHOMY ceueHHIo. PacueTsl nposenensl Ha undposoit
Maumse IBM 7094-7040.



